Optimal Error Estimates for the hp–Version Interior Penalty Discontinuous Galerkin Finite Element Method

نویسندگان

  • Emmanuil H. Georgoulis
  • Endre Süli
چکیده

We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for second-order linear reaction-diffusion equations. To the best of our knowledge, the sharpest known error bounds for the hp-DGFEM are due to Riviére, Wheeler and Girault [8] and due to Houston, Schwab and Süli [5] which are optimal with respect to the meshsize h but suboptimal with respect to the polynomial degree p by half an order of p. We present improved error bounds in the energy norm, by introducing a new function space framework. More specifically, assuming that the solutions belong element-wise to an augmented Sobolev space, we deduce hp-optimal error bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hp-Version Discontinuous Galerkin Finite Element Method for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

hp -Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation

We consider the symmetric formulation of the interior penalty discontinuous Galerkin finite element method for the numerical solution of the biharmonic equation with Dirichlet boundary conditions in a bounded polyhedral domain in R, d ≥ 2. For a shape-regular family of meshes ? Partially supported by CNPq Brazil ?? Grant from CNPq Brazil Correspondence to: Endre Süli 2 Igor Mozolevski et al. co...

متن کامل

A note on the design of hp-version interior penalty discontinuous Galerkin finite element methods for degenerate problems

We consider a variant of the hp-version interior penalty discontinuous Galerkin finite element method (IP-DGFEM) for second order problems of degenerate type. We do not assume uniform ellipticity of the diffusion tensor. Moreover, diffusion tensors of arbitrary form are covered in the theory presented. A new, refined recipe for the choice of the discontinuity-penalisation parameter (that is pre...

متن کامل

hp–VERSION INTERIOR PENALTY DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS ON ANISOTROPIC MESHES

We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for linear second-order elliptic reactiondiffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the hpDGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003